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ABSTRACT

The purpose of this thesis is to investigate parameter estimation in a multivariate

Gaussian copula model with discrete marginal distributions. Connections between

Gaussian copula models and probabilistic graphical models are analysed. Building

upon theoretical results in Nešlehová (2007) and Popovic et al. (2018), three novel

algorithms are proposed. The first method relies on multi-armed bandits, the second

uses a variational upper bound approximation and the third leverages recent advances

in deep generative models (Kingma and Welling, 2013). All three methods rely

on a novel full rank decomposition of square real matrices which is shown to have

desirable theoretical properties. The performance of all three algorithms is compared

to existing algorithms on two and three dimensional simulated datasets.
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ABRÉGÉ

La recherche qui fait l’objet de ce mémoire a pour but d’explorer l’estimation

des paramètres de dépendance d’un modèle de copule Gaussienne pour données dis-

crètes. Les liens entre les modèles de copule Gaussienne et les modèles graphiques

sont analysés. En s’appuyant sur les travaux antérieurs de Nešlehová (2007) et

Popovic et al. (2018), trois nouveaux algorithmes sont proposés. La première méth-

ode se base sur les bandit manchots, la deuxième utilises une approximation à la

limite variationnelle supérieure et la troisième apprend le modèle de copule à l’aide

d’un modèle génératif profond (Kingma and Welling, 2013). Les trois algorithmes

utilisent une nouvelle factorization de matrice et il est ensuite démontré que cette

décomposition a des propriétés théoriques intéressantes. Finalement, la performance

des méthodes est comparée à celle des algorithmes existants sur des données deux et

trois dimensionnelles simulées.
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Chapter 1
Introduction

1.1 Introduction

Recent breakthroughs in deep statistical learning caused a drastic increase in the

volume of processed data. For example, the cloud infrastructure allows organizations

to store information taken from social networks, finance sector and search history

with little to no loss (Abaker et al., 2015). On the other hand, the emergence of fast,

flexible and scalable learning algorithms such as logistic regression, random forests,

Bayesian networks and later convolutional neural networks makes the task of data

filtering (e.g., imputation of missing values or removal of outliers) easier and more

efficient to perform. We can informally split all regression and classification methods

in two categories: blackbox and whitebox methods. Whitebox approaches are mod-

els with interpretable outputs and parameters whose primary goal is inferring the

underlying structure of a given process. Such methods include but are not limited

to linear and logistic regression, random forests and Bayesian networks. Blackbox

algorithms are models in which everything except the input and output variables,

as well as a small set of hyperparameters is known; their mechanism is usually very

complex and does not yield any meaningful insight (Wei Koh and Liang, 2017). We

can list support vector machines (SVMs) and artificial neural networks as the most

widely known blackbox algorithms.

1



In practice, fitting a whitebox model to a high-dimensional dataset tends to be time-

consuming due to large numbers of covariates. Moreover, approaches such as logistic

regression are prone to overfitting and require explicit regularization. Using lasso

(ℓ1), ridge (ℓ2) or ElasticNet (Zou and Hastie, 2005) (combined lasso and ridge)

penalties will yield a sparse solution of regression coefficients. Another widely used

feature selection method is based on removing correlated covariates from the design

matrix (Hall, 1999). In fact, knowing the dependence structure of features is hence

crucial for efficient filtering.

Bayesian networks form an appealing class of probabilistic models: they are fast

to learn, can handle both discrete and continuous data and, most importantly, are

arguably one of the most interpretable learning algorithms due to their explicit rep-

resentation of conditional independence. Most of the literature on the estimation of

parameters in Bayesian networks assumes a known conditional dependency structure

represented through a directed acyclic graph. In this thesis, we will focus on esti-

mating dependencies between random variables, which reduces to finding the most

suitable connectivity structure (to be formally defined in the next chapter) of the

dependence graph. The main objective of the thesis is, given a design matrix in

which every row represents a d−dimensional discrete observation, to estimate the

adjacency matrix of the corresponding dependence graph. That is, if two columns of

the design matrix are dependent in the probability sense, the vertices corresponding

to these columns should be connected with an edge in the dependence graph. We

use the fact that for samples from the multivariate Gaussian distribution, correlation

is equivalent to dependence and leverage this property to represent the dependence

2



between random variables with a latent Gaussian copula model. In this setting,

estimating the adjacency of the dependence graph is equivalent to estimating an in-

vertible covariance matrix for the latent Gaussian copula function.

In the second chapter, we provide background information on methods currently

used to estimate the dependence structure between random variables and discuss

their limitations when applied to discrete data. We argue that models based on the

multivariate Gaussian distribution can be used to represent the dependence struc-

ture between random variables. For instance, the graphical lasso known as glasso

(Friedman et al., 2008) has traditionally been used to provide a sparse estimate of the

precision matrix in Gaussian graphical models. If the marginal distribution functions

of the data are discrete, glasso does not explicitly account for the presence of ties in

the observations, which might lead to bias and numerical stability issues. To solve

the dependence graph reconstruction problem in the discrete case, we introduce the

reinforcement learning and approximate Bayesian inference frameworks and argue

for their use in the newly proposed methods.

In the third chapter, we propose three novel algorithms based on state-of-the-art

machine learning techniques in order to estimate the copula parameters. The first

approach makes use of multi-armed bandits and frames the estimation of the co-

variance matrix problem as a multi-lever game. The second approach uses Hölder’s

variational upper bound to estimate the latent Gaussian integral associated with the

marginal probability mass functions and proceeds similarly to coordinate ascent to

estimate the precision matrix. The third algorithm relies on auto-encoding varia-

tional Bayes neural networks to automatically learn the marginal probability mass
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functions as well as the parameters of the latent model. Moreover, we suggest a

full-rank decomposition of the Gaussian covariance matrix into the product of two

learnable vectors and show that the proposed parameterization is always invertible.

This property guarantees the existence of a precision matrix and hence of a depen-

dence graph associated to the design matrix of interest.

In the fourth chapter, we conduct simulation studies to compare the performance

of our methods among them and to existing approaches. We show that while all

proposed methods manage to recover the correct graph structure, the number of

hyperparameters which require tuning is quite high for both the multi-armed ban-

dit and the variational Hölder algorithms. The third proposed method, however,

achieved comparable performance to state-of-the-art algorithms while being easy to

tune, fast and requiring a number of learnable parameters linear in the dimension of

the data.

In the fifth chapter, we discuss the results of the simulated studies and argue that

the variational Bayes approach performed the best among the three proposed al-

gorithms. We provide insight into the interpretation of the latent Gaussian copula

model and draw parallels with recent work on stochastic computational graphs. Fi-

nally, we conclude by suggesting an additional modification that could be examined

to improve the performance and the interpretability of our suggested approaches.
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Chapter 2
Background

2.1 Dependence modeling with graphical models

Probabilistic graphical models (PGMs) are widely used in statistics and com-

puter science (Lauritzen, 1996). They represent joint probability distributions through

specification of conditional independence.

A graphical model is a graph G = (V,E) with a set of vertices V and set of edges

E = {e : e = (vi, vj)∀vi, vj ∈ V }. Along with G, a PGM also has a set of marginal

probability distributions defined on subsets of V . That is, a graphical model based

on a graph G induces a joint probability distribution on vertices v1, ..., vd.

If G is a directed acyclic graph (DAG), that is a graph without cycles, then the PGM

defines a so-called Bayesian network. On the other hand, if it is composed of undi-

rected edges, G is called a Markov random field. While both representations have

common properties, they are used in different situations (see Lauritzen (1996) and

Højsgaard et al. (2012)). In both models, the joint density function factors along the

edges of the graph due to the Markov assumption.

A parent vertex of w in a DAG is any vertex v ∈ V such that ∃ e ∈ E : e = (v, w),

that is from v to w. Parent vertices in Markov random fields are vertices which

are connected to the target vertex by an undirected edge. Furthermore, a vertex v′

is said to be adjacent to the vertex v ∈ V if and only if ∃e ∈ E : e = (v, v′) or

e = (v′, v). Finally, a clique is a subset C of vertices of a graph G = (V,E) such that
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any two c, c′ ∈ C are adjacent.

Let G = (V,E) be an undirected graph. We say that for any A,B ⊆ V and any

S ⊆ V where S ∩ (A ∪ B) = ∅, S d-separates A and B if every path from any

node in A to any node in B passes by a node in S. Finally, we allow the random

variables to be indexed by sets of corresponding vertices. That is, if I ⊆ V , then

YI = {Yi : i ∈ I}.

We now present what is known as the Markov property for graphical models.

Definition 2.1.1. Let G = (V,E) be either a directed or undirected graph which,

together with a set of random variables Y = {Yv1, ..., Yvd} indexed by V , forms a tuple

B. The following statements define the pairwise, local and global Markov property

over graphs, respectively:

1. If for any two non-adjacent vertices vi, vj ∈ V : Yvi ⊥ Yvj |YV \{vi,vj}, then B is

said to satisfy the pairwise Markov property;

2. If for any vertex vi ∈ V : Yvi ⊥ YV \Parents(vi)|Parents(vi), then B is said to

satisfy the local Markov property;

3. If for any subsets of vertices S, S ′ and T ⊆ V such that T d-separates S and

S ′,

YS ⊥ YS′|YT , (2.1)

then B is said to satisfy the global Markov property.

When the tuple B satisfies either the local or the global Markov property, it

is known as a graphical model. If the graph is directed, the model is known as a

Bayesian network and if the graph is undirected, it is known as Markov random field.
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Definition 2.1.2. Given a DAG G = (V,E), a multivariate random vector indexed

by V is said to form a Bayesian network with respect to G if it satistfies the local

Markov property with respect to G.

If Y = (Y1, ..., Yd) is a Bayesian network with respect to G, then the joint density

factorizes, viz

P [Yv1 = yv1 , ..., Yvd = yvd] =
d∏

i=1

P [Yvi = yvi|YParents(vi)]. (2.2)

Definition 2.1.3. Given an undirected graph G = (V,E), a multivariate random

vector indexed by V is said to form a Markov random field with respect to G if it

satisfies the global Markov property with respect to G.

By the Hammersley-Clifford theorem, if Y is a Markov random field and its

density is strictly positive, then the joint distribution factorizes according to the

cliques in the graph:

P [Yv1 = yv1, ..., Yvd = yvd] =

K∏

k=1

ψk(yck), (2.3)

where c1, ..., ck ⊆ V are the cliques of G and ψk(yck) is referred to as the potential of

yck indexed by the clique ck.

Bayesian graphical models are often used to learn the posterior distribution of

some parameter of interest θ. To fully specify a Bayesian network, it is required to

provide a graph G which encodes the dependence structure of the joint probability

mass function of d discrete random variables, P [Yv1 = yv1, Yv2 = yv2 , ..., Yvd = yvd],

as well as one conditional marginal per random vertex, P [Yvi = yvi |YParents(vi)]. The
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main reason to ever consider dealing with such models is mostly a reduced param-

eter space. For example, suppose that we wish to represent a 3-dimensional joint

Bernoulli distribution of X1, X2, X3. We would need 23−1 = 7 parameters to deduce

the corresponding probabilities since we cannot assume independence. In general,

for a d−dimensional probability function with binary outcomes, we must fit 2d − 1

parameters. Now, suppose that we have a Bayesian network. The number of pa-

rameters is at most 2d − 1 but is usually much less. The graphical model factorizes

the multivariate density by removing parameters due to conditional independence

assumptions. For example, the network shown in Fig. 2–1a with 4 nodes has 7 pa-

rameters. In general, Bayesian networks with d+1 binary nodes can be defined with

only 2d+1 parameters as opposed to 2d−1 if no assumptions about the independence

structure are made.

One of the most famous examples of a Bayesian PGM is a naive Bayesian net-

work (Mccallum and Nigam, 1998). Very often used for classification tasks in high-

dimensional problems, naive Bayes classifiers assume the following setup. Given

a tuple (X, Y ) where X is a design or feature matrix and Y the labels or cate-

gories of the corresponding observations, we are interested in finding P [Y = k|X ] =

P [X|Y=k]P [Y=k]
P [X]

. If k ∈ {0, 1}, the task is binary classification and can be solved

through alternative methods such as logistic regression. However, if we view every

column in X (i.e. every covariate) as a node in G, then the naive Bayes assumption

stipulates that the features X1, ..., Xd are conditionally independent of each other

given the outcome Y . This drastically reduces the dimensionality of the parameter

space and allows fast inference with a smaller chance of overfitting.
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To represent graphical models, we make use of the following graph notation: shaded

Y

X2X1 X3

(a) Naive Bayesian network

Y

X2X1 X3

(b) Bayesian network

Figure 2–1: The graphical model specified by the set of of covariates {X1, X2, X3}
and the response Y under a) the naive Bayes assumption and b) no naive Bayes
assumption.

nodes represent observations (i.e. evidence), blank nodes represent latent (i.e. un-

observed) random variables, edges between two nodes indicate that both random

variables are not independent of each other and, finally, a plate around a set of

nodes provides a shorthand notation for N identically distributed nodes.

In this case, Fig.2–1a shows a network assuming conditional independence of covari-

ates or features on the outcome variable Y . If Y,X1, ..., Xd are Bernoulli random

variables, then we require the following parameters to be learned: P [Y = 1], P [X3 =

1|Y = 1], P [X3 = 1|Y = 0], P [X2 = 1|Y = 1], P [X2 = 1|Y = 0], P [X1 = 1|Y =

1], P [X1 = 1|Y = 0] for d = 3. For a Bayesian network, we typically have at most

2d − 1 parameters (fully connected joint) and at least d parameters. Thus, we are

required to fit O(d) parameters for d features under the Naive Bayes assumption,

2d − 1 parameters with no conditional independence assumptions and anywhere in

between with a Bayesian network. Since the connectivity of the graph directly af-

fects the cardinality of the parameter space and hence the time complexity of the

algorithm, estimating the conditional independence structure of d random variables

is of great importance.
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It is often more time and space efficient to reconstruct an undirected graphical model

from data as opposed to a directed graphical model. Suppose that we wish to es-

timate the connectivity of a dependence graph consisting of d vertices. In an undi-

rected graph, each edge is either present or not, resulting in 2(
d
2) distinct models,

each of which should be assessed with a goodness-of-fit criterion based on penalized

likelihood such as AIC, BIC or DIC. In a directed graph, each edge between nodes

v, v′ ∈ V can be either absent, going from v to v′ or from v′ to v, resulting in 3(
d
2)

possible graphs. As the number of vertices increases, we obtain an exponentially

large search space for which no efficient (that is, polynomial time) algorithm exists.

In this work, we deal with undirected dependence structures between observed ran-

dom variables.

In order to transpose the Markov property on undirected networks, we need to men-

tion results related to conditional independence in probabilistic graphical models.

In contrast with Bayesian networks, undirected PGMs are defined over subsets of

nodes called cliques. As mentioned earlier, estimating a directed graphical model

from data is much more time-consuming than estimating an undirected graphical

model. The search space for the second problem is much smaller than the first one

and, if we were to use a heuristic approach and examine the most promising solutions

only, is expected to be more accurate.

2.2 Copula functions

Copulas are a powerful tool used in multiple disciplines in order to model de-

pendence between random variables. This section deals with the general formulation

of copulas and proceeds to focus on a particular copula function: the multivariate
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Gaussian copula. It is important to mention that all results in this section that are

related to copulas have been borrowed from (Nelsen, 2007).

We begin by citing a fundamental result in probability theory.

Theorem 2.2.1. Let X be a random variable with a continuous distribution function

F .

Then U = F (X) ∼Uniform(0, 1), called the probability transform. Conversely, if

U ∼Uniform(0, 1) and F an arbitrary distribution, then Y = F−1
X (U) has distribution

F . The later is called the quantile transform.

Theorem 2.2.1 is widely used in sampling techniques, where we are interested

in obtaining i.i.d. draws from a target continuous distribution Y with a cdf F . We

would then proceed by sampling U1, ..., Un ∼ U(0, 1) and inverting the cdf in order

to obtain F−1(U1), ..., F
−1(Un), a random sample from F .

We are now ready to provide a definition for copula functions.

Definition 2.2.2. A copula C is a d−variate joint distribution function on the real

hypercube [0, 1]d with standard uniform margins.

A fundamental result linking distribution functions to copulas is due to Abe

Sklar (1959).

Theorem 2.2.3 (Sklar). Let (X1, ..., Xd) be a random vector with a joint distribution

function F and marginal distribution functions {Fj}dj=1. Then, there exists a copula

C such that for all x1, ..., xd ∈ R

F (x1, ..., xd) = C(F1(x1), ..., Fd(xd)).
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If the marginals are continuous, then C is unique. Conversely, for any univari-

ate distribution functions {Fj}dj=1 and arbitrary copula C, the function given by

C(F1(x1), ..., Fd(xd)) is a joint distribution function with marginals F1, ..., Fd.

Consider a random vector X = (X1, ..., Xd) with a set of corresponding marginal

distribution functions {Fj}dj=1 and joint distribution function F . Then, by Sklar’s

theorem there exists a copula C such that

F (x1, ..., xd) = C(F1(x1), ..., Fd(xd)) (2.4)

When the margins are continuous, we can find the copula by applying Theorem 2.2.1

to the joint distribution function, which yields

C(u1, ..., ud) = F (F−1
1 (u1), ..., F

−1
d (ud)) (2.5)

Broadly speaking, copula functions rely on the probability and quantile trans-

forms in order to model the dependence structure between random variables with

arbitrary (continuous and discrete) distributions.

An important type of copulas is the copula of the multivariate Gaussian distribution.

Consider the simplest (bivariate) case, where CR = Φ2(Φ
−1
1 (u1),Φ

−1
1 (u2)) is parame-

terized by a correlation coefficient R ∈ [−1, 1]. Varying R between these limits yields

a dependence pattern for X1, X2, as shown in Fig. 2–2.
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a   R = 0.1 b   R=0.5 c   R=0.9

Figure 2–2: Comparison of 500 samples from Gaussian copulas with different corre-
lation parameters.

Definition 2.2.2 has a number of side results, some of which are mentioned below.

Corollary 2.2.3.1. Let C be a d−dimensional copula. Then,

1. C(u1, ..., ui−1, 0, ui+1, ..., ud) = 0, i = 1, ..., d;

2. C(1, ..., 1, ui, 1, ..., 1) = ui, i = 1, ..., d;

3. max
{
1− d+

d∑

j=1

uj, 0
}

︸ ︷︷ ︸

W (u1,...,ud)

≤ C(u1, ..., ud) ≤ min
{
u1, ..., ud

}

︸ ︷︷ ︸

M(u1,...,ud)

, where W and M

are known as the lower and upper Fréchet-Hoeffding bounds, respectively.

4. c(u1, ..., ud) =
dd

du1...dud
C(u1, ..., ud) is the copula density function (if it exists).

2.3 Likelihood of a copula function’s parameters

In this section, we discuss the computation of the likelihood function for the

parameters of a copula.

Consider a d−variate distribution function F of a random vector X = (X1, ..., Xd)

with marginals {Fj}dj=1 parameterized by ψ = {ψj}dj=1 and a copula Cθ parameterized

by θ using Sklar’s theorem, that is F = Cθ(F1, ..., Fd). Furthermore, if F is continuous
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with a density function f , then

f(x1, ..., xd) = cθ(F1(x1), ..., Fd(xd))

d∏

j=1

fj(xj) (2.6)

and the log-likelihood of the marginal and copula parameters at the point (x1, ..., xd)

will be of the form

ℓ1(ψ, θ) =
d∑

j=1

log fj(xj) + log cθ(F1(x1), ..., Fd(xd)) (2.7)

In the case when the marginal distribution functions have unknown parameters, we

want to estimate both the copula and the marginal parameters from a sample using

the maximum likelihood principle. Consider a random sample X ∈ R
n×d from the

distribution function F . To estimate the marginal distribution functions F1, ..., Fj,

we can use the approach from Joe (1997) with sequential maximization of the like-

lihood with respect to ψ and θ. Using (2.7) together with the method proposed by

Genest et al. (1998), the maximization can be done sequentially. In the first step,

the marginal parameters ψ are estimated by maximizing the marginal likelihoods.

In the second step, the copula parameter θ is estimated.

The non-parametric estimator known as the empirical cumulative distribution func-

tion (eCDF) can be used to estimate the marginals:

F̂j(x) =
1

n+ 1

n∑

i=1

I[Xij ≤ x] (2.8)

where I is the indicator function. Using the eCDF has the advantage of not requir-

ing the estimation of any marginal parameter. The copula parameter can the be
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estimated by maximizing the pseudo log-likelihood

ℓn(θ) = log cθ(F̂1(x1), ..., F̂d(xd)) . (2.9)

To estimate the copula parameter θ, we must solve the following optimization

problem:

θ̂ = max
θ
ℓn(θ) (2.10)

which can be found through traditional optimization algorithms such as Newton-

Raphson.

To illustrate the approach, suppose that we have samples from a d−variate

Gaussian copula model with unknown marginals F1, ..., Fd. The copula is assumed

to be parameterized by the correlation matrix R ∈ R
d×d. We can estimate Fj with

the non-parametric eCDF F̂j for j = 1, ..., d. We will be left with the following

likelihood function

ℓn(R) =

n∑

i=1

log cR(ûi1, ..., ûid) , (2.11)

with ûij = F̂j(xij), 1 ≤ i ≤ n and 1 ≤ j ≤ d. The likelihood function ℓn(R) for the

parameter R can be maximized to yield a maximum likelihood estimate of R.

2.4 Discrete marginals

Suppose we wish to use the probability integral transform on a discrete random

variable X with cdf F . That is, we want to compute Y = F (X). Denote the left limit

of F as F (x−) = limx↑t F (t). By definition of a discrete CDF, P [X = x] = P [x− ≤

X ≤ x] = F (x)− F (x−) > 0 for at least one x. While using a copula model to link

discrete marginals still makes sense (i.e. F = C(F1, ..., Fd) is a valid distribution

15



function), the copula of F in this case is not unique. The non-uniqueness of the

copula of F has been discussed by Genest and Nešlehová (2007) who have shown

that this issue invalidates inference procedures developed for copula models with

continuous marginal distribution functions.

Consider a copula model for F , i.e. for a parametric copula family C ∈ {Cθ : θ ∈ Θ}

and distributional functions Fj ∈ {Fψj
: ψj ∈ Ψ}, 1 ≤ j ≤ d belonging to some

discrete parametric family, we investigate the properties of F = C(F1, ..., Fd). A

sequential approach can be used, where we first estimate the marginal and then the

copula parameters. Let’s take as an example a bivariate discrete dataset, a random

sample from {X1, X2} with a joint distribution function F and unknown marginal

CDFs F1 and F2, respectively. We model the dependence between X1 and X2 with a

copula C with parameter θ. Note that after estimating the true (unknown) marginal

distribution functions with their empirical CDFs F̂1 and F̂2, the log likelihood of the

sample can be rearranged as:

ℓn(θ) =
n∑

i=1

logP [X1 = xi1, X2 = xi2|θ]

=

n∑

i=1

logP [xi1 < X1 ≤ xi1, xi2 < X2 ≤ xi2|θ]

=
n∑

i=1

log

(

F (xi1, xi2)− F (x−i1, xi2)− F (xi1, x−i2) + F (x−i1, x
−
i2)

)

=

n∑

i=1

log

(

C(F1(xi1), F2(xi2))− C(F1(x
−
i1), F2(xi2))

− C(F1(xi1), F2(x
−
i2)) + C(F1(x

−
i1), F2(x

−
i2))

)

(2.12)
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We can then conduct rank-based estimation by replacing F1 with F̂1 and F2 with F̂2

in (2.12), respectively. The properties of this rank-based estimator when F1, F2 are

discrete were investigated in Ery (2016) but the optimization becomes cumbersome

for d > 2. Moreover, if the copula does not have a closed form, evaluating the

expression in (2.12) can lead to negative arguments in the logarithm function and

thus numerical instability.

x2−

x2

x1− x1

X1

X
2

Figure 2–3: Illustration to Eq. 2.12 representing the volume of the copula C contained
between the left and right limits of X1 and X2.

Another treatment of discrete marginals often proposed in the literature (Trivedi

and Zimmer, 2006; Popovic et al., 2018) is jittering binned observations with addi-

tive standard uniform noise. Formally, for any integer-valued random variable X

with distribution function F , we define X̃ = g(X, ε), where ε ∼ fε, g is often picked

to be g(x, y) = x + y and ε ∼ U(0, 1). Jittering is a common technique of remov-

ing ties and stands behind the introduction of randomized quantile (also known as

Dunn-Smyth) residuals (Chambers, John M and Cleveland, William S and Kleiner,
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Beat and Tukey, 2017; Dunn and Smyth, 1996; Nešlehová, 2007). By uniformly

selecting points in each bin (F (x−i ), F (xi)], 1 ≤ i ≤ n, ties in the discrete obser-

vations xi are broken randomly. Such an approach, however, fails to preserve the

copula structure, as seen in Fig 2–4. Two random variables X1 ∼ Bernoulli(0.3)

and X2 ∼ Bernoulli(0.6) are generated from a Gaussian copula with parameter

ρ = 0.7. Samples from the original copula are shown on the left, while samples

from (F̃1(X̃1), F̃2(X̃2)) are presented on the right. The green area corresponds to

the joint probability P [F1(X1) ≤ 0.7, F2(X2) ≤ 0.4]. We can easily see that the

introduction of uniform noise breaks ties but at the same time has impact on the

underlying dependence structure.
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a       Gaussian copula b   Jittered Gaussian copula

Figure 2–4: Comparison of samples from a) the true Gaussian copula and b) Gaus-
sian copula obtained through jittering Bernoulli observations.
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The copula C is not unique in the discrete case. On the other hand, the copula

of the jittered data is one admissible copula, the so-called multilinear (checkerboard)

copula (Li et al., 1997). Since the checkerboard copula is not the copula Cθ that

we are typically interested in, maximizing (2.11) leads to bias, as explained and

illustrated in Genest and Nešlehová (2007).
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Chapter 3
Methods

3.1 Copulas and probabilistic graphical models

In machine learning, one is often concerned with computing the marginal and

conditional densities in probabilistic graphical models, estimating the parameters

(e.g. if the random variable X indexed by vertex v has a parametric distribution fθ,

estimate θ) as well as model selection (structural learning).

Structural learning consists in estimating the connectivity of an undirected

graph G = (V,E) with vertices indexing random variables grouped in the vector

X = (Xv, v ∈ V ) (Elidan, 2013). For each pair (Xvi, Xvj ), we would like to know

whether (vi, vj) is an edge in the graph.

The most widely used model in structure learning is the multivariate Gaussian dis-

tribution which gives rise to Gaussian Markov fields. The reason for its popularity

is due to the fact that if (X, Y ) are jointly distributed as a bivariate Gaussian, then

X ⊥ Y ⇐⇒ Corr(X, Y ) = 0. More generally, Xvi ⊥ Xvj |XV \{vi,vj} ⇐⇒ Ωij = 0,

where Σij = Cov(Xvi , Xvj ) and Ω = Σ−1 is the inverse of the covariance matrix. Ω

is also known as the precision matrix and measures how tightly the data is grouped

around the mean vector.
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To gain an intuition about the problem, consider three random variables X, Y, Z

which are jointly Gaussian with precision matrix

Ω =

x y z














x ωxx ωxy ωxz

y ωyx ωyy 0

z ωzx 0 ωzz

(3.1)

The graph encoding this dependency structure is presented below:

X

Y Z

Figure 3–1: The graph representing a multivariate Gaussian distribution with preci-
sion matrix Ω in (3.1).

The structure depicted in Figure 3–1 encodes the conditional independence Y ⊥

Z|X. It can be seen that estimating the undirected graph above boils down to

estimating Ω. This can be done by inversion of the covariance matrix Σ for n samples

of a random vector X. However, when d > n, the matrix Σ is not of full rank and

hence not invertible.

Generally speaking, the Gaussian copula can be abstractly thought of as the

nonparanormal distribution (Liu et al., 2009).

Definition 3.1.1. Let Z = (Z1, ..., Zd) be jointly distributed as N (0,Σ). The random

vector X = (X1, ..., Xd) with margins F1, ..., Fd is said to follow a nonparanormal or
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Gaussian copula model if there exists a set of monotonically increasing transforma-

tions g = {gj}dj=1 such that Xj = gj(Zj) for 1 ≤ j ≤ d.

In fact, choosing gj = F−1
j ◦Φ, 1 ≤ j ≤ d makes the nonparanormal distribution

follow a Gaussian copula model. The conditional independence property of Gaussian

graphical models is conserved through the transformation gj = F−1
j ◦ Φ, 1 ≤ j ≤ d

for continuous random variables X1, ..., Xd with distribution functions F1, ..., Fd.

The glasso method (Friedman et al., 2008) provides a way to estimate the pre-

cision matrix through L1 penalization of the likelihood function.

Consider the vector X = (X1, ..., Xn) jointly distributed as a multivariate Gaus-

sian distribution N (µ,Σ). If µ is known or estimated with an unbiased estimator µ̂,

the likelihood for Ω will be

L(Σ−1) ∝ log |Σ−1| − Tr((ŜΣ−1)), (3.2)

where Ŝ is the sample covariance matrix. Taking Ω = Σ−1 , we maximize the log-

likelihood subject to L1 penalization given by

f(Ω) = log |Ω| − Tr(ŜΩ)− λ||Ω||1, (3.3)

for some positive definite matrix Ω and Lagrangian multiplier λ. Using the primal-

dual formulation, the graphical lasso can be switched to minimization of an analogous

objective function over all positive definite arguments. The main reason behind

solving the dual over the primal is computational efficiency of modern optimizers,

for which minimization is the standard form of an optimization problem.

The glasso method starts with the following matrices:
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Ω =






Ω11 ω12

ω21 ω22




 , Ŝ =






S11 s12

s21 s22




 , W =






W11 w12

w21 w22




 , (3.4)

where Ω = Σ−1 and W = Ω−1.

We proceed as follows:

1. Take W = Ŝ + λI

2. For each row and column:

(a) Solve the following quadratic programming problem:

β̂ = min
β

[
1

2
βTW11β + βT s12 + λ||β||1

]

, (3.5)

using results from previous iterations as starting points.

(b) Update the weight ŵ12 = −W11β̂.

(c) Save the coefficient β̂ for this position.

3. For each column, compute

ω̂22 =(ŝ22 + λ− β̂T ŵ12)
−1,

ω̂12 =β̂ω̂22 .

(3.6)

The above algorithm produces, after convergence, a sparse estimate of the matrix

Ω. Higher values of the hyperparameter λ lead to weights being driven to zero, and

hence to a sparse precision matrix and a disjoint graph.

We know that glasso works on variables that are jointly normally distributed.

If we have a continuous random vector (X1, ..., Xd) with respective marginal CDFs
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F1, ..., Fd, we can then define the vector h as

hj(xj) = Φ−1
1 (Fj(xj)), (3.7)

We know by probability and quantile transforms that hj(xj) ∼ N (0, 1). However,

the components of the vector h(X) need not to be independent, which is what

we use to build the graph. Once again, denote the precision matrix of h(X) by

Ω. The conditional independence between continuous random variables holds in the

nonparanormal case: h(Xvi) ⊥ h(Xvj )|h(XV \{vi,vj}) ⇐⇒ Ωij = 0 and it then follows

that Xvi ⊥ Xvj |XV \{vi,vj} ⇐⇒ Ωij = 0 (Elidan, 2013).

This property does not hold for a copula model with discrete marginals. To see

this, consider a graphical model in which (X, Y, Z) jointly follow a Gaussian copula

model with Bernoulli marginals with parameters 0.89, 0.27 and 0.37, respectively,

with correlation matrix

Σ =

x y z














x 1 1 1

y 1 1 0

z 1 0 1

(3.8)

and precision matrix

Ω =

x y z














x −1 1 1

y 1 0 −1

z 1 −1 0

(3.9)
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The joint conditional probability P [Y = 0, Z = 0|X = 0] depends on the copula

through the joint P [X = 0, Y = 0, Z = 0], which we calculated to be approximately

0.0845 using bootstrap. If the conditional independence of the latent variables would

imply the conditional independence of their respective discrete observations, then the

joint should factor as P [X = 0, Y = 0, Z = 0] = P [X = 0]P [Y = 0|X = 0]P [Z =

0|X = 0] ≈ 0.097. Since the observed joint density does not factorize along the graph

the same way that the latent joint density did, we can conclude that this implication

is only valid when no ties are present, i.e. the observations are continuous.

Therefore, in order to reconstruct the dependence graph of the random vector (Z1, ..., Zd),

we need to estimate Ω by combining (3.7) with rank-based inference in the proposed

approaches.

Because the graphical lasso is meant to work on multivariate Gaussian distribu-

tions, any monotone increasing transformations of continuous data will yield correct

estimates of Ω. The algorithm has an implicit bias when dealing with discrete data

which cannot be mapped to the multivariate Gaussian. It is still possible to use

the glasso on either the original observed data or the latent variables. In this case,

however, the estimated precision matrices will tend to be biased.

3.2 Reinforcement learning

Various tasks in statistical learning require finding an optimal behaviour in a

given setting or, in other words, solving the reinforcement learning (known in statis-

tical literature as decision theory) problem. A considerable part of this work relies

on multi-armed bandits and is hence closely related to stochastic optimal control.

The problem is posed as follows.
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Let (S,A,R,P ,s0,γ) be a 6-tuple representing a Markov decision process (MDP) where

S is a finite set of states, A a finite set of allowed actions, R = R(st, at, st+1) :

S × A× S → R is the (deterministic or stochastic) reward function, P = P (st+1 =

s′|st = s, at = a), ∀a ∈ A, s, s′ ∈ S are the environment transition probabilities and

s0 ⊆ S is the set of initial states. The system is also known as the reinforcement

learning agent and starts in one of the initial states s0 at time t = 0. In subsequent

time steps t = 1, 2, 3, ..., the agent acts according to a policy π(a|s) = P [at|st] and

moves from state st to st+1, collecting a reward Rt+1 = R(st, at, st+1). The environ-

ment is characterized by its set of initial states in which the agent starts, as well as

the Markov transition model which encodes the mechanics of moving from one state

to another. The transition probability matrix P is a row stochastic matrix which

describes the dynamics of the MDP.

In order to compare states, we introduce the state value function V : S → R which

gives the expected sum of discounted rewards in that state. Define Qπ(s, a) : S×A→

R and Vπ(s) : S → R as:

Qπ(s, a) = Eπ,P [

∞∑

k=0

γkRt+k+1|St = s, At = a]

=
∑

s′∈S

∞∑

k=0

π(a|s)P [St+k+1 = s′|St+k = s, At = a]γkRt+k+1

Vπ(s) = Eπ,P [
∞∑

k=0

γkRt+k+1|St = s]

=
∑

a∈A

s′∈S

∞∑

k=0

π(a|s)P [St+k+1 = s′|St+k = s, At = a]γkRt+k+1

(3.10)
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The reinforcement learning problem is two-fold: (1) given a fixed policy π we

would like to obtain the correct state value function given by Vπ(s), ∀s ∈ S and (2)

we wish to find the optimal policy π∗ which yields the highest V (s) for all states

of the MDP or, equivalently, π∗(s) = maxπ Vπ(s). The first task is known in the

reinforcement learning literature as prediction and the second as control.

In order to find the value function for each state, we need to solve the Bellman

equations (Bellman, 1952):

Vπ(s) = Eπ,P [R(st+1, π(at+1|st+1)) + γVπ(st+1)] or

Vπ = R + γPVπ ,

(3.11)

for Vπ = {Vπ(s1), ..., Vπ(st)} and R = {R(s1, π(a1|s1)), ..., R(st, π(at|st))}. We can

rewrite (3.11) as:

Qπ(s, a) = Eπ,P [R(st+1, at+1) + γQπ(st+1, a)] or

Qπ = R + γPQπ ,

(3.12)

for Qπ = {Qπ(s1, a1), ..., Qπ(st, at)}. Here, we used the fact that if Gt = Rt+γRt+1+

... at state st, then Gt = Rt + γGt+1 and π,P[Gt] = Vπ(st). The Bellman equations

then follow by applying the expectation operator on both sides.

Both (3.11) and (3.12) have the following direct solution obtained by matrix inver-

sion: Vπ = (I − γP )−1R. However it should be noted that this is only well-defined

for finite-state MDPs, and further as this computation has O(n2.4) complexity (Cop-

persmith and Winograd, 1987), it is only computationally feasible for small MDPs.

Therefore, sample-based algorithms such as Temporal Difference (TD) (Sutton, 1988)
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for prediction and SARSA or Q-learning (Rummery and Niranjan, 1994; Watkins and

Dayan, 1992) for control are preferred for more general classes of environments.

One particular instance of MDPs with no explicit states is called a multi-armed

bandit (MAB). The analogy is borrowed from the setting of the well-known casino

machine: an agent has to choose between K levers, each of which, when activated,

returns a sample from its reward distribution. The prediction problem for MABs

consists in learning a Q value for each action (or lever) in order to approximate the

reward distribution. In the MAB setting, the Q value function for an arm a pulled

n times is simply Qn(a) =
1
n

∑n

t=1R(at), that is the average of all observed rewards

for that arm. Note that R(a) is a distribution which can be degenerate at one point

but does not have to be.

3.3 Variational inference

The most traditional and well-known Bayesian inference method for parameter

estimation consists in sampling from the posterior distribution of a set of parameters

conditioned on the evidence (i.e. observed data) and is known as Markov Chain

Monte Carlo. Formally, suppose that we observe a sample X1, ..., Xn of independent

and identically distributed d−dimensional random variables with probability density

(mass for discrete) function fX . We use continuous variables for convenience but the

same logic applies to discrete data. If fX is parameterized by a parameter vector θ,

then fX ≡ fX(x|θ) = limdx→0 P [X ∈ (x, x + dx)|θ] are equivalent. We refer to the

joint distribution of the data for a given set of parameters as the likelihood and denote

it as ℓn(θ) =
∏n

i=1 fX(xi|θ). We adopt notation used in Bayesian literature and use

P [X = x] = fX(x) interchangeably. Recalling Bayes’ rule, we have the following
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expression which can be used to update the probability of observing a parameter

vector p(θ|X1 = x1, ..., Xn = xn) = p(θ|x):

p(θ|x) =
∏n

i=1 fX(xi|θ)p(θ)
fX(x)

=
ℓn(θ)p(θ)

∫

θ̃
ℓn(θ̃)p(θ̃)dθ̃

∝ ℓn(θ)p(θ) . (3.13)

( 3.13) shows the posterior distribution p(θ|x) proportional to the product of the

likelihood ℓn(θ) and the parameter prior p(θ). Taking p(θ) = δθ∗ at the true value

θ∗ recovers the frequentist hypothesis. The advantage of Bayesian methods consists

in representing parameter uncertainty through updating the initial belief (i.e. prior)

with the likelihood. As opposed to maximum likelihood estimation where one solves

the optimization problem maxθ ℓn(θ), Bayesian inference aims to obtain samples from

the posterior distribution.

Sampling algorithms such as Gibbs or Metropolis-Hastings (Gelman, 2013) (outlined

in Alg. 1) rely on Markov Chain Monte Carlo (MCMC) to produce sequences of

independent draws from p(θ|x). They have long been considered as the traditional

Bayesian methods and extensively studied throughout the statistical literature. One

major downside of Metropolis-Hastings (from now on we will deal with Metropolis-

Hastings since Gibbs sampling is a special subcase) is the time complexity: in order

to achieve independent draws from the Markov chain, the sampler has to discard

everything obtained in between consecutive accepted points Xt and Xt+h for h≫ 0.

The parameter h has to be sufficiently large to guarantee independence. Moreover,

the Markov chain has to be run long enough in order to achieve the equilibrium (also

known as stationary) distribution. Because during this burn-in period no samples

are retrieved, recent work in the field focuses on improving MCMC convergence as
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a mean to increase the algorithms’ efficiency (Larjo and Lähdesmäki, 2015; Franzke

and Kosko, 2015).

Algorithm 1: Metropolis-Hastings
Input : Observed values x1, ..., xn, iterations number T , proposal

distribution Jt(θ∗|θ(t−1));

Output: Samples from the posterior p(θ|x);

Initialize θ(0) s.t. p(θ(0)|x) > 0;

for t = 1, 2, .., T do

Sample θ∗ ∼ Jt(θ
∗|θ(t−1));

r ← p(θ∗|x)

p(θ(t−1)|x)
;

Sample u ∼Uniform(0,1);

if u < min(r, 1) then

θ(t) ← θ∗;

else

θ(t) ← θ(t−1);

end

end

Because they do not make use of gradient updates, MCMC methods highly

depend on the right choice of the proposal distribution Jt in order to converge. It is,

however, possible to make use of gradient descent coupled with approximate inference

to achieve a much faster convergence. This idea of approximate Bayesian methods

is known as variational inference.

In order to properly define variational methods, we first have to examine the concept

of divergence.
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Definition 3.3.1. Let S be the space of all probability density functions with some

common support RX . A divergence D is a mapping D : S×S → R with the property

that for any two probability densities f, g ∈ S, D(f ||g) ≥ 0 and D(f ||g) = 0 ⇐⇒

f = g almost surely.

Divergences can but need not to be symmetric and do not have to satisfy the

triangle inequality. For this reason, they are usually seen as a weaker version of a

distance. Definition 3.3.1 presents a very broad concept of divergence. Instead, we

will focus on a commonly used divergence known as Kullback-Leibler (KL)(Kullback

and Leibler, 1951). For g, f ∈ S,

DKL(f ||g) =
∫

x∈RX

f(x) log
f(x)

g(x)
dx = E

f
[log f(X)− log g(X)] . (3.14)

One can easily show that the KL divergence is not symmetric: consider X ∈ {0, 1},

f(0) = 0.5, f(1) = 0.5 and g(0) = 0.1, g(1) = 0.9. Then, D(f ||g) = 0.5 log 5 +

0.5 log 5
9

= 0.51 while D(g||f) = −0.1 log 5 + 0.9 log 9
5

= 0.36 which concludes

the counterexample. Additionally, the KL divergence can be seen as the continu-

ous extension to entropy, also called relative entropy. A closed-form expression for

DKL(f ||g) where f ∼ N (µ1,Σ1) and g ∼ N (µ2,Σ2) exists, which greatly improves

gradient computations and is presented below.

DKL(f ||g) =
1

2

(

Tr(Σ−1
2 Σ1)+(µ2−µ1)

TΣ−1
2 (µ2−µ1)−d+log

(
det(Σ2)

det(Σ1)

))

, (3.15)

where the trace operator is denoted Tr(A) and returns the sum of the main diagonal

entries of the matrix A and d is the rank of Σ1,Σ2.

Variational Bayes methods rely on divergence minimization, be it the KL divergence
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or any other metric with desirable properties. Renyi, α, β and f−divergences are

borrowed from statistical physics and have become increasingly popular in machine

learning applications (Li and Turner, 2016; Hernández-Lobato et al., 2016; Nowozin

et al., 2016). However, recent work hints that divergences close to KL tend to work

better in practice (Mazoure and Islam, 2017). A widely used byproduct of the KL

divergence is known as the reverse KL divergence and is defined in (3.16).

DKL = Ef [log g(X)− log f(X)] (3.16)

To distinguish the KL divergence from the reverse KL divergence, we call the former

the forward KL divergence. Fig. 3–2 illustrates the different sets of parameters

obtained when minimizing KL (a) and reverse KL (b) divergences. We see that

a   Forward Kullback-Leibler b   Reverse Kullback-Leibler

q(z)

p(z)

Figure 3–2: Fitting a unimodal Gaussian distribution to a mixture of two Gaussians
has a different behaviour if using a) Kullback-Leibler or b) reverse Kullback-Leibler.

the forward KL divergence approximates both modes of the two-Gaussians mixture,

while the reverse KL divergence focuses on a single mode.
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In order to derive the classical variational Bayes algorithm, we first recall Jensen’s

inequality(Casella and Berger, 2002), presented below.

Lemma 3.3.2. (Jensen’s inequality) Let f : R→ R be a convex function. If X is a

random variable with EX [X ] < ∞, then f(EX [X ]) ≤ EX [f(X)]. Conversely, if f is

concave, then f(EX [X ]) ≥ EX [f(X)].

Recall that a real function f is called convex if for any x1, x2 ∈ A for a convex

set A ⊆ R and any r ∈ (0, 1), f(rx1 + (1 − r)x2) ≤ rf(x1) + (1 − r)f(x2). The

function f is concave if −f is convex. Suppose that we are interested in maximizing

the data probability p(x). Following the convention in statistical literature, we can

maximize the log evidence log p(x). Taking a latent random variable z defined over

a sample space Z with a variational density q, we obtain:

log p(x) = log

∫

z∈Z

p(x, z)dz

= log

∫

z∈Z

q(z)
p(x, z)

q(z)
dz

= logEq

[
p(x, Z)

q(Z)

]

≥ Eq[log p(x, Z)− log q(Z)]

= Eq[log p(x|Z) + log p(Z)− log q(Z)]

= Eq[log p(x|Z)]−DKL(q||p))

= −L(x)

(3.17)

The final expression for L in (3.17) is known as the evidence lower bound or ELBO.

All derivations of the ELBO require the use of Jensen’s inequality as a means to

bound a random variable’s distribution by its expectation.
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The lower bound depends on a new density q ≡ qφ which is parameterized by a new

set of parameters φ. When choosing the family of q, it is crucial to pick a tractable

(i.e. easy to sample from) distribution.

Since log p(x) ≥ −L(x), maximizing the ELBO or equivalently minimizing L should

maximize the log probability of the data. Minimization of the objective function

should be done with respect to the new parameters of the density q. The major

advantage of variational inference (VI) methods over MCMC is faster convergence.

Indeed, the lower bound is a differentiable function which can be used to find the

optimal set of parameters φ and does not require burn-in time. The variational

inference task then consists in finding a q ∈ Q, for Q being the class of tractable

parametric distributions, which minimizes the ELBO. Because qφ comes from a para-

metric family, it is sufficient to find the optimal set of parameters φ with respect to

L. However, due to a number of reasons such as long computation time, it has been

suggested to further factor the variational density q into the product of independent

densities parameterized by subgroups of latent variables. Let zj denote the jth latent

variable subset such that z = (z1, ..., zm). Note that each zj can but does not have

to be a single variable. Then the variational density qφ can be decomposed for any

z ∈ Z:

qφ(z) =

m∏

j=1

qφj (zj) (3.18)

This simplification (3.18) is known in Bayesian literature as the mean-field variational

family (Blei et al., 2017) and allows to greatly speed up the optimization process by

assuming independence between each subgroup of latent variables zj .

It can be shown using the calculus of variations that the logarithm of variational
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distribution over a subset of latent variables log qφj (zj) must be proportional to

Ezi6=j
[log p(zj |zi 6=j , x)], where zi 6=j = (z1, .., zj−1, zj+1, .., zm) in order to minimize

DKL(q(zj)||p(zj|zi 6=j, x)). Therefore, one can select the optimal form of the varia-

tional distribution q in order to minimize the reverse Kullback-Leibler divergence.

Variational auto-encoding networks

With the growth of computational powers of personal devices, even a low-end

smartphone can carry out a complicated simulation such as MCMC or multivariate

regression. In particular, the development of Graphical Processing Units (GPUs)

allowed for a surge in performance across high-dimensional classification and regres-

sion tasks on complex data types such as images, texts, audio and even video files.

This idea of letting the statistical model select the relevant covariates (or features) is

known as deep learning. Deep learning makes use of artificial neural networks (NNs)

to approximate any real-valued function. For this reason, neural nets are sometimes

called universal function approximators.

Let X = {X1, ..., Xn} be a random sample from some true data distribution fX of

dimension d. Moreover, a column vector of responses y = {y1, ..., yn}T is associated

with X. The classical regression setting assumes that the responses are a linear

combination of covariates:

g(Y ) = β0 + β1X1 + ..+ βdXd + ε, (3.19)

for column vectors X1, .., Xd, link function g, coefficient vector β = {β0, .., βd} and

random independent noise ε such that E[ε] = 0.

35



If we follow best practices in the literature, we reformulate (3.19) as

Y = f(wTX), (3.20)

where we take f = g−1 and w = β. The quantity wTxi defines the coordinate of the

point pi = (ŷi, xi) in R
d which lies on the hyperplane wTX. The distance d(yi, ŷi)

provides an error signal of how far away the predicted value ŷi lies from the true

response yi. Choosing d to be the Euclidean distance corresponds to the traditional

mean squared error minimization and can be solved iteratively. Recall Newton’s

method for root finding with updates:

β(t) = β(t−1) − f(β(t−1))

f ′(β(t−1))
(3.21)

for first-order Newton methods and

β(t) = β(t−1) − f ′(β(t−1))

f ′′(β(t−1))
(3.22)

for second-order methods. (3.22) is derived by second order Taylor series expansion

of the objective function f(β).

For example, the mean squared error Lw(y, ŷ) = 1
n

∑n
i=1(yi − ŷi)2 is the most com-

monly used loss function. A loss function L : R→ R is a real-valued function which

indicates the cost associated with observing a certain event or data point. Minimiz-

ing the loss function (or error) improves the goodness-of-fit of the model; selecting

the most appropriate loss function for either classification or regression tasks can

greatly impact both model performance and convergence properties. We denote the

loss function with respect to parameters w as Lw.
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The simplest algorithm for parameter estimation in neural networks is known as

stochastic gradient descent (SGD) and is presented in Alg. 2.

Algorithm 2: Stochastic gradient descent
Input : Observed values x1, .., xn, responses y1, .., yn , iterations number T ,

learning rate α(t), loss function Lw, batch size B;

Output: Converged weights w(T );

Initialize w(0) according to some distribution;

for t = 1, 2, .., T do

for b = 1, 2, .., n/B do

w(t) ← w(t−1) − α(t) 1
B

∑

i∈b∇wLw(yi, ŷi);

end

end

When B = 1, the method is known as online SGD and requires the true gradient

update values in order for the algorithm to converge to a local optimum.

Using the Hessian matrix Hw instead of the Jacobian (multivariate extension of the

gradient vector) leads to the well-known Newton-Raphson iterative procedure. In the

case when the vector of reconstructed responses ŷ is itself fed into a linear model,

the architecture is known as a multilayer neural network. Parameter updates conse-

quently use the chain rule on each respective weight set.

Suppose that we have a multilayer neural network M : Rd → V K with input size

d and output size K. That is, all observations X1, .., Xn are of dimension d and

all responses y1, .., yn are of dimension K. When the subspace V ⊆ R, the prob-

lem is known as regression, when V ⊆ Z as classification and when V K = R
d as

reconstruction. In this work, we focus on the task of reconstructive latent learning.
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Reconstructive networks are also called autoencoders and can be seen as a nonlinear

version of Principal Component Analysis (PCA).
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Figure 3–3: Graphical models of the standard autoencoder (left) and variational
autoencoder (right) are shown. Note that VAEs incorporate a sampling mechanism
within their latent space.

Fig. 3–3 compares architectures of autoencoding networks and variational au-

toencoding networks (Kingma and Welling, 2013) (VAEs). The most staggering

difference between both is given by the shaded node ε; injecting stochastic noise al-

lows for sampling new observations instead of reconstructing the input exactly. VAEs

belong to the class of generative models, among with generative adversarial networks

(GANs) and restricted Boltzmann machines (RBMs). These explicit density estima-

tion models have been widely used since their creation, with applications ranging

from synthetic molecule generation to social network data imputation (De Cao and

Kipf, 2018; Mazoure et al., 2018). Generative models map the data points received

as input onto a lower-dimensional latent space (in most of the cases, a manifold),

which is analogous to PCA, t-SNE and other dimensionality reduction techniques.
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By explicitly adding stochastic noise as a covariate, it is possible to generate samples

from the distribution that approximates the true distribution of the input data while

still being able to estimate the gradient with respect to the model’s parameters using

the score function trick (explained in the next chapter).
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Chapter 4
Proposed algorithms

4.1 Decomposition of the covariance matrix Σ

Recall that, given a random sample X of dimension n × d from some distribu-

tion function F , our task consists in finding the most likely PGM representing the

independence structure of each component. Working with a latent Gaussian copula

model parameterized by a d−dimensional correlation matrix R, we aim to estimate R.

The correlation matrix R for a collection of jointly Gaussian distributed random

variables X1, ..., Xd can be defined as Ri,j =
Cov(Xi,Xj)√

Var(Xi)Var(Xj)
or in matrix form:















1 R1,2 R1,j R1,d−1 R1,d

R2,1 1

Ri,1 1

Rd−1,1 1

Rd,1 1















(4.1)

Note that R = RT and is constrained to have values between −1 and 1, respectively.

In fact, if the observed random variables have unit variance, then R = Σ. This

imposes d additional constraints on the problem but allows to interchange R with Σ.

In all of the proposed methods, we instead work with the covariance matrix Σ, from
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which we can obtain the correlation matrix R =

(
√

diag(Σ)

)−1

Σ

(
√

diag(Σ)

)−1

and the precision matrix Ω = Σ−1.

We begin by parameterizing the covariance matrix Σ ≡ uTu + exp(a) ◦ Id for

u, a ∈ R
d and identity matrix Id ∈ R

d×d. If we continue working with Σ, there are

d(d+1)
2

free parameters and 2d equations given by the entries of u and a. On the other

hand, using the correlation matrix R leaves us with d2−d
2

parameters for 2d equations.

Solving d(d−1)
2
≤ 2d shows that for 0 ≤ d ≤ 5, the factorized form uTu+ exp(a) ◦ Id

has enough degrees of freedom to represent any matrix.

By sampling both vectors u and a from a prior distribution, we induce a prior

distribution over covariance matrices Σ. Define s(A) as the sum operator applied to

every row of the matrix A ∈Md×d and resulting in a d−dimensional column vector.

If the components of u and a are sampled independently from distribution functions

Fa and Fu with support Ra and Ru respectively, then the matrix Σ is diagonally

dominant with probability

P [exp(a) + diag(uTu) ≥ s(uTu− diag(uTu))] =
d∏

i=1

P [exp(ai) + u2i ≥
∑

j 6=i

|uiuj|]

=
d∏

i=1

P [exp(ai) + u2i −
∑

j 6=i

|uiuj| ≥ 0]

≥
d∏

i=1

P [u2i −
∑

j 6=i

|uiuj| ≥ 0]

(4.2)
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If we assume that the support of u is contained in (0,∞)d, observe that the

random quantity ∆ij = u2i −
∑

j 6=i |uiuj| is non-negative with probability

P [∆ij > 0] = P [u2i >
∑

j 6=i

uiuj]

= P [ui >
∑

j 6=i

uj ]

= P [ui −
∑

j 6=i

uj > 0]

:= p .

(4.3)

It then follows that the probability that a matrix generated in the fashion described

above is diagonally dominant is at least pd.

Table 4–1 presents approximate values of p for random variables defined over a

positive support. We note that by carefully selecting the prior distribution over u,

we can obtain a diagonally dominant matrix with larger or smaller probability.

For example, based on the table, a 2 × 2 matrix obtained from a 2−dimensional

vector u where each component ui ∼ Uniform(0, 1), 1 ≤ i ≤ 2 will be diagonally

dominant with probability of at least 0.029, as opposed to 0.009 if u comes from a

standard normal passed through the absolute value function.

If Σ is strictly diagonally dominant, that is, σii >
∑

j 6=i |σij | ∀i, then it is non-

singular according to Gershgorin circle theorem (Gerschgorin, 1931). It also has the

following useful property:

Lemma 4.1.1. Let A ∈Md×d be a symmetric real-valued matrix. If A is diagonally

dominant and diag(A) > 0, then A is positive semi-definite.
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Statistics
d ptrue pd

Gamma(α = 3, β = 1)

2 0.887 0.147
3 0.443 0.036
5 0.024 0.003
7 0 0
10 0 0

|N (0, 1)|
2 0.904 0.105
3 0.532 0.042
5 0.11 0.004
7 0.011 0
10 0 0

Uniform(0, 1)

2 1 0.163
3 1 0.048
5 0.847 0.002
7 0.373 0
10 0.033 0

Table 4–1: Probability pd of observing the event ∩di=1{∆ij ≥ 0} for various posi-
tive random variables, as well as the true probability that the generated matrix is
diagonally dominant (ptrue).

Thus, we established that the vector decomposition of Σ guarantees the gener-

ation of positive semi-definite matrices with probability at least pd.

We go further and establish a tighter result.

Theorem 4.1.2. (Vector decomposition of Σ) Let a, u ∈ R
d : u > 0, d > 1 and

Σ = uTu+ exp(a) ◦ Id. Then Σ is positive definite.
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Proof. A square real-valued matrix Σ is positive definite if and only if all its eigen-

values are greater than 0. Equivalently, the characteristic equation pΣ(λ) = det(Σ−

λId) = 0 has only positive real roots.

Suppose that λ = 0 is a root of pΣ(λ). Then det(Σ) = 0 must be satisfied. Using

the Minkowski determinant theorem, we see that det(Σ) = det(uTu+ exp(a) ◦ Id) ≥

det(uTu) + det(exp(a) ◦ Id) = det(exp(a) ◦ Id) > 0, where det(uTu) = 0. To see the

later, consider the system of equations uTux = 0. There exists a non-zero vector x

orthogonal to u such that ux = 0 and hence uTux = 0 but x 6= 0, which implies

that uTu is singular and hence det(uTu) = 0 and we are allowed to use Minkowski’s

theorem (on at least positive semi-definite matrices). On the other hand, exp(a) ◦ Id
is simply the identity matrix scaled by the factor exp(a) and hence is full rank, im-

plying det(exp(a) ◦ Id) > 0. Therefore, λ = 0 cannot be an eigenvalue of the system.

Now, suppose that λ < 0. It follows that det(Σ + |λ|Id) = 0 should hold. We

use Minkowski’s inequality once again to obtain det(uTu + (exp(a) + |λ|) ◦ Id) ≥

det(uTu) + det(exp(a) ◦ Id) + |λ|d det(Id) = det(exp(a) ◦ Id) + |λ|d > 0 since λ <

0. Here, we define the addition between the vector exp(a) and the scalar λ as

exp(a) + λ ≡ {exp(a1) + λ, ..., exp(ad) + λ}. Hence, λ < 0 is not an eigenvalue of Σ

either and Σ is positive definite.

An alternative proof uses the matrix determinant lemma as follows:

det(Σ) = det(exp(a) ◦ Id + uTu)

=

(

1 + u
(
exp(−a) ◦ Id

)
uT

)

det(exp(a) ◦ Id),
(4.4)

44



where det(exp(−a) ◦ Id) =
∏d

i=1 exp(−ai) > 0 by properties of the exponential func-

tion. Hence, for det(Σ) 6= 0, we must have −1 6= u
(
exp(−a) ◦ Id)uT . In fact, note

that since exp(−a) ◦ Id is positive definite, then u
(
exp(−a) ◦ Id)uT > 0 for any real

vector u. This shows that u
(
exp(−a) ◦ Id

)
uT > 0 and hence det(Σ) 6= 0, which

makes the matrix invertible.

We obtain a recipe to randomly sample from the positive definite cone by

generating two positive real vectors a and u. Note that this parameterization al-

lows to model both positive and negative covariance patterns. For example, taking

u = {−1, 1} forces uTu to have off-diagonal entries of −1.

The inverse matrix Σ−1 can be computed using the Sherman-Morrison formula:

Σ−1 =

(

uTu+ exp(a) ◦ Id
)−1

= exp(−a) ◦ Id −
(
exp(−a) ◦ Id

)
uTu

(
exp(−a) ◦ Id

)

1 + u exp(−a) ◦ IduT
,

(4.5)

where we use
(
exp(a) ◦ Id

)−1
= exp(−a) ◦ Id. The inversion is well-defined since Σ

is non-singular as a result of being positive definite.

If we wish to compute the inverse correlation matrix R−1, we can use the relation

R =

(
√

diag(Σ)

)−1

Σ

(
√

diag(Σ)

)−1

and hence:

R−1 =

[(
√

diag(Σ)

)−1

Σ

(
√

diag(Σ)

)−1]−1

=
√

diag(Σ)Σ−1
√

diag(Σ),

(4.6)
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because diag(Σ)T = diag(Σ).

To conclude this section, note how in order to fit a covariance matrix Σ to a dataset,

it is sufficient to independently sample two real vectors a, u from some distribution

function as starting points of the iterative procedure. Using either stochastic gradient

descent (SGD) or second-order optimization methods such as Newton-Raphson, we

can then update a and u to be as close to the real Σ∗ as possible. Finally, the

dependence structure between random variables encoded by the precision matrix Ω

can be approximated through Σ−1 using the shorthand formula presented in (4.5).

Note that under the suggested decomposition, Σ has d2 learnable entries. The vector

exp(a) can handle the diagonal entries which by properties of variance should be

nonnegative, leaving d2−d
2

entries to be learned through a d−dimensional real vector

u. Solving d2−d
2
≤ d we obtain that for d ≤ 3 the system has infinitely many solutions,

meaning that it spans the setsM1×1,M2×2 andM3×3 intersected with the positive

definite cone, while in larger dimensions the decomposition becomes rather restrictive

and is equivalent to clipping any A ∈Md×d to the form uTu+ exp(a) ◦ Id.

4.2 Multi-armed bandits for estimation of dependence structure between
discrete random variables

In this section, we propose a simple algorithm based on multi-armed bandits

borrowed from the reinforcement learning literature.

As argued in the previous section, both vectors u and a give us only 2d free parameters

to interact with. If we see the system as a 4d-armed bandit, each entry in u and a

can be thought of having an up and a down lever. At timestep t, the former will

increase the value of that entry by some amount ξ(t) while the later will decrease

the value of the entry by the same amount. The task consists in (a) estimating the
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value of each lever and (b) find the policy which maximizes the expected returns (i.e.

expected sum of future rewards). In order to do both at the same time, we make use

of the off-policy control method known as Q-learning (Watkins and Dayan, 1992).

Algorithm 3 outlines the main steps of the classical Q-learning bandit algorithm.

Algorithm 3: ε−greedy discrete MAB

Input: Exploration coefficient ε ∈ (0, 1), vectors u, a ∈ R
d, matrix of

observations X ∈ R
n×d, set of actions A, multi-armed bandit B;

Output: Q-values Q+
u , Q

−
u , Q

+
a , Q

−
a for all actions;

for a in 1, .., d do
Q+
a (a), N

+
a ← 0;

Q−
a (a), N

−
a ← 0;

Q+
u (a), N

+
u ← 0;

Q−
u (a), N

−
u ← 0;

end
for t in 1, ..,∞ do

p1 → Uniform(0, 1);

At ←
{

⌊ a
4d
⌋, a ∼ Uniform(0, 1) p1 < ε

arg maxaQ
+
a (a) ∪Q−

a (a) ∪Q+
u (a) ∪Q−

u (a) p1 ≥ ε
;

if p1 ≥ ε then
i← arg maxQQ

+
a (a) ∪Q−

a (a) ∪Q+
u (a) ∪Q−

u (a);
end
Rt ← B(At, u, a),N(At)← N(At) + 1;






Q+
a (At)← Q+

a (At) +
1

N(At)
+
a
[Rt −Q+

a (At)] i = 0

Q−
a (At)← Q−

a (At) +
1

N(At)
−
a
[Rt −Q−

a (At)] i = 1

Q+
u (At)← Q+

u (At) +
1

N(At)
+
u
[Rt −Q+

u (At)] i = 2

Q−
u (At)← Q−

u (At) +
1

N(At)
−
u
[Rt −Q−

u (At)] i = 3

;

end

The output of the method is a list of Q-values for each action, as well as converged u

and a vectors. We use the ε−greedy policy πε which takes optimal actions according

to the Q-values in 100(1− ε)% of cases and takes a random action otherwise.
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To be able to use a bandit algorithm, we need a reward signal which provides feedback

to the agent. We suggest to use the copula likelihood as the reward function. If we

use (2.12), then

Rt = ℓn(R), (4.7)

where R is the copula parameter. The two dimensional likelihood formula can be

extended to any arbitrary size through the inclusion-exclusion principle. This entails

that Q(a) = R1+R2+...+Rn

n
is the average estimated likelihood.

Here is a short outline of the method:

• Sample an action a0 uniformly;

• Depending on the action, perform one of the following:

– ua0 ← ua0 + ξ(0);

– ua0 ← ua0 − ξ(0);

– aa0 ← aa0 + ξ(0);

– aa0 ← aa0 − ξ(0);

• Recompute Σa0 and the corresponding likelihood ℓn(R);

• The agent receives the likelihood as a reward and updates the corresponding

Q-values.

Eventually, the process stabilizes when some actions have much larger values than

others, meaning that a local optimum has been reached. Recent advances in curricu-

lum learning (Graves et al., 2017) have suggested that instead of (4.7), the reward
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function should be the progress made by the system:

Rt = ℓn(Rat)− ℓn(Rat−1), (4.8)

i.e. the difference of likelihoods obtained at consecutive timesteps.

The hyperparameter ε can be tuned byK−fold cross-validation but can usually be set

to 0.1 to achieve good performance. Alternative exploration strategies such as Upper

Confidence Bound (UCB), Softmax Policy and Thompson sampling can be used but

for the sake of simplicity, we restrict all further mentions of the MAB algorithm to

the ε−greedy policy. The step size ξ can be set to a constant value (e.g. ξ(t) = 0.1)

or to a Robbins-Monro sequence, where
∑∞

t=0 ξ(t) = ∞ but
∑∞

t=0 ξ
2(t) < ∞ to

guarantee convergence with probability one.

As a concluding remark, the suggested ε−greedy discrete MAB approach can be seen

as a combinatorial optimization method closely related to simulated annealing and

genetic algorithms which do not use the gradient of the objective function but prefer

to rely on a quality heuristic.

4.3 Full-rank variational autoencoder for discrete data

We are interested in modelling the distribution of the data, that is P [Xi1 =

xi1, ..., Xid = xid]. Suppose that the random vector X = (X1, ..., Xd) has been

generated by the random vector Z which follows a d−variate Gaussian distribution.

Because X is discrete, its probability mass function can be recovered by truncating

the vector Z. The latent Gaussian problem consists in estimating the parameters of

the multivariate Gaussian based on samples of the vector X.
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To do so, we assume a latent Gaussian model which is learned by an encoder-

decoder stochastic network, also known as auto-encoding variational Bayes and pre-

sented in Fig. 4–1.

zφ θ

X

N

pθ(x|z)
Decoder

qφ(z|x)
Encoder

Figure 4–1: Full-rank auto-encoding variational Bayes model. Dashed lines show
neural networks, solid show parameterization.

We choose the variational density qφ(z|x) = N (µ(x),Σ(x)) as a multivariate

Gaussian distribution where parameters µ(x) ∈ R
d and Σ(x) ∈ R

d×d,Σ(x) ≻ 0

are computed by neural networks as defined in Eq. 4.9. Theorem 4.1.2 guarantees

that the covariance matrix will always lie in the positive-definite cone by fitting two

vectors u(x), a(x) ∈ R
d such that Σ(x) = u(x)Tu(x) + exp(a(x)) ◦ Id.

The following equation fully specifies a minimal architecture for a full-rank VAE:

Encoder







µ(xi) = fµ(w
T
µxi)

a(xi) = fa(w
T
a xi)

u(xi) = fu(w
T
u xi)

Σ(x) = u(xi)
Tu(xi) + exp(a(xi)) ◦ Id

qφ(z̃|xi) = N (µ(xi),Σ(xi))

Decoder







θ(zi) = fθ(w
T
θ zi)

pθ(x̃|zi) = δ(zi − θ(zi))

(4.9)
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Note how the decoder is in fact a deterministic pass through the network and has no

sampling involved, unlike the encoder. This rejoins the theory of Popovic et al. (2018)

who decomposed an arbitrary probability mass function into a latent Gaussian model

p(x) =
∫

R(z)
p(x, z)dz =

∫

R(z)
p(x|z)dP (z) where p(x|z) = δ(z ∈ (zi,min, zi,max)) for

(zi,min, zi,max) =

(

Φ−1(FX(x
−
i )),Φ

−1(FX(xi))

)

and FX(x
−
i ) = supt<xi FX(t) which is

exactly our model for pθ(x̃|zi).

To fit the parameters of interest, we optimize the ELBO with a slight modification

to the prior over the latent vector p(z):

L = Eqφ(z|x)[log pθ(x|z)]−DKL(qφ(z|x)||p(z)), (4.10)

where the true unknown conditional densities pθ and qφ are learned by the encoder

and decoder networks. Furthermore, we make use of the empirical Bayes paradigm

and set the prior over the latent Gaussian distribution p(z) ∼ N (x̄n, sn) where

x̄n = 1
n

∑n

i=1 xi estimates the mean vector and sn estimates the population covari-

ance matrix through the classical estimator sn = 1
n−1

∑n
i=1(xi − x̄)(xi − x̄)T . While

Kingma and Welling (2013) originally used a multivariate Gaussian prior with iden-

tity covariance p(z) ∼ N (0d, Id), the model failed to capture dependence within the

latent vector z due to being pushed closer to an independent Gaussian by the KL

term. Our prior, on the other hand, allows the VAE to learn a vector decomposition

of Σ which is always invertible and hence easily estimate the dependence structure

of the inputs. Using the sample covariance matrix and performing modifications on

it as to make Σ invertible is precisely the idea of glasso (Friedman et al., 2008). The

major difference between the VAE approach and glasso lies in the regularization:
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glasso imposes a L1 regularization on the entries of the matrix, while our algorithm

aims to factorize Σ into a product of vectors.

In theory, we aim to solve the following optimization problem:

Σ̂ = maxΣ∈Sd
L, (4.11)

where S is the set of all d × d real, positive semi-definite symmetric matrices. We

instead restrict ourselves to solving

Σ̂ = maxΣ∈S
′

d
L, (4.12)

for S
′

d = {M : M = uTu + exp(a) ◦ Id, (u, a) ∈ R
d × R

d}. It was shown earlier that

S
′

d ⊆ Sd for all positive d, where equality holds for d = 1, 2, 3. This implies that we

solve a more specific problem by imposing a structural constraint on Σ.

Implementation-wise, the lower bound presented in (4.10) is differentiable and the

gradient ∇θL is computed and applied automatically when using the Pyro and

Pytorch libraries in Python. These two libraries (one can also use Tensorflow and

Edward Python packages to achieve an identical result) work greatly together: we

do not have to specify an explicit bound, but rather "observe" our realized dataset

and "sample" a latent vector from any implemented random variable. Pyro then

computes the ELBO L, as well as all gradients ∇L using the score function trick,

viz (Williams, 1992)

∇θEX [f(x; θ)] = EX [∇θf(x; θ)] = EX [f(x; θ)∇θ log f(x; θ)], (4.13)
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for any given (not necessarily differentiable) probability density function parameter-

ized by the parameter vector θ. The estimator above has multiple useful properties,

for instance it is unbiased.

Finally, we can approximate both the lowerbound L and its gradients with a mini-

batch. First, sample a subset XM of size M from the available data. Then, evaluate

L̂M(θ, φ;XM , z) =
1

M

∑

xi∈XM

[log pθ(xi|z)]−DKL(qφ(z|xi)||p(z)), (4.14)

where the latent noise z ∼ qφ(z|xi) is taken to be multivariate Gaussian and can be

sampled using the reparameterization trick: sample ε ∼ N (0, I) and then z = µ+Lε

where LTL = Σ. In turn, Σ = uTu+exp(a) ◦ Id, where only u and a are updated by

gradient backpropagation.

Algorithm 4: Full-rank VAE

Input: Matrix of observations X ∈ R
n×d, minibatch size N , learning rate α;

Output: Learned a and v vectors, estimated qφ and pθ densities;

Initialize θ, φ;

for t in 1, ..,∞ (until convergence) do

X
M ← Sample M points from X;

z ← Sample M points from the latent distribution qφ;

g ←∇θ,φL̂M(θ, φ;XM , z) (Estimate the gradients using minibatch);

θ, φ← θ, φ− αg (Update the parameters);

end

More sophisticated gradient descent methods such as Adam (Kingma and Ba,

2015) or RMSProp (Hinton et al., 2012) can be used for faster convergence but are not
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necessary. After convergence of the algorithm, we have access to the encoder network

qφ which can be used to estimate µ and Σ from data and to the decoder network pθ

which can generate samples from the learned multivariate distribution (i.e. copula

model with discrete marginals). Using the Sherman-Morrison inversion formula, we

can recover Ω = Σ−1 as a function of the data and build the corresponding graphical

model.

4.4 Variational Hölder upper bound minimization

While the classical formulation of the ELBO involves the maximization of the

evidence p(x), recent work on the topic (Bouchard and Lakshminarayanan, 2015)

suggests the feasibility of minimizing a variational upper bound. Before describing

the proposed algorithm, we recall Hölder’s inequality.

Theorem 4.4.1 (Hölder’s inequality). Let (X,Σ, µ) define a measurable space. Let

p, q,∈ (1,∞] such that 1
p
+ 1

q
= 1. Then, for all measurable functions f and g on X,

||fg||1 ≤ ||f ||p||g||q, (4.15)

where ||f ||r denotes the Lr norm, viz r

√∫

X
|f |rdx.

We recall the approach used by Popovic et al. (2018) and assume a latent Gaus-

sian model Zi, 1 ≤ i ≤ n with d−dimensional discrete observations Xi, 1 ≤ i ≤ n:

P [X1 = xi1, ..., Xd = xid] =

∫

Bi

φd(zi;R)dzi, (4.16)

where Bi = ∩j [Φ−1(Fij(x
−
ij)),Φ

−1(Fij(xij))]. Integrating out the latent variable yields

the probability mass of the vector (xi1, ..., xid).

To see this, consider a discrete random variable X. If, for example, X has a high
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probability of taking zero values and P [X = 0] = 0.5, then solving
∫ 0

−∞
φ1(z1)dz1

recovers the probability mass. In general, (Nikoloulopoulos, 2013) provides a neat for-

mulation for the discrete marginal Gaussian copula problem. Consider the following

setup: let X = (X1, ..., Xd) be a discrete random vector generated by a multivariate

Gaussian copula C with correlation matrix R that we wish to estimate and marginal

distribution functions {Fj}dj=1. Then,

P [X1 = x1, ..., Xd = xd] = P [x1 − 1 ≤ X1 ≤ x1, ..., xd − 1 ≤ Xd ≤ xd]

= P [z−1 ≤ X1 ≤ z1, ..., z
−
d ≤ Xd ≤ z1]

=

∫
z1

z−1

...

∫
zd

z−
d

φd(z1, ..., zd;R)dz1...dzd,

(4.17)

which is the integral that we aim to evaluate.

Maximizing the log evidence p(x) then boils down to estimating the corresponding

truncated Gaussian integral. A recent paper (Bouchard and Lakshminarayanan,

2015) suggests to view the Gaussian integral with orthogonal truncations (that is,

integral over a rectangle region) as a norm of the random variable Z taking values

in a Hilbert space Z. Then, we wish to approximate

I∗ =

∫

γ1(Z)γ2(Z)dν(Z) = ||γ1γ2||1, (4.18)

where γ = γ1γ2 is the density function of Z and ν is the Lebesgue measure if we work

over the real space. For Ψ : Z → R
+ and α = (α1, α2), α1, α2 ∈ R

+, the authors
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define

Īα(Ψ) = ||γ1Ψ||α1||γ2/Ψ||α2. (4.19)

We can now cite the main result of (Bouchard and Lakshminarayanan, 2015)

Theorem 4.4.2 (Variational Hölder bound). Let γ1, γ2 be two positive measures

defined on Z. Then

I∗ ≤ Īα(Ψ) (4.20)

holds for any positive scalar α1, α2 such that 1
α1

+ 1
α2

= 1 and any positive function

Ψ : Z → R
+.

Variational Bayes based on the Hölder upper bound first selects a tractable

family of distributions F = {Ψ(τ), τ ∈ T } and obtains estimates α̂1, τ̂ by solving the

following optimization problem:

α̂1, τ̂ = arg min
R×T Īα(Ψ(τ)) (4.21)

Note how optimizing logit( 1
α1
) makes the problem unconstrained. In this paper, we

pick Ψ to be the zero-centered multivariate Gaussian distribution Φd(0,Σ) with the

independence assumption, that is Σ = τ ◦ Id.

To reiterate over the truncated Gaussian integration example given by the authors,

we pick γ1(z) =
∏d

j=1 fj(zj) for univariate functions fj : R → R, ∀j = 1, ..., d and

choose γ2(z) = exp (−1
2
zTΣz + µTz) where Σ is a symmetric d × d matrix and µ a

d−dimensional real vector. The problem of interest consists in evaluating

I∗ =

∫

Rd

d∏

j=1

fj(zj) exp (−
1

2
zTΣz + µT z)dz (4.22)
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If we take fj(z) = I[a−j ≤ z ≤ aj ], we obtain the truncated Gaussian latent model

which specifies P [X1 = x1, ..., Xd = xd] = P [{z1 ∈ (a−1 , a1)} ∩ ... ∩ {zd ∈ (a−d , ad)}].

The left and right integration bounds {a−j }dj=1 and {aj}dj=1 are fixed for a multi-

variate Gaussian distribution and correspond to orthogonal truncation limits. How-

ever, in the case when the input data isn’t normally distributed, we can first es-

timate the true marginal CDFs Fj with respective empirical CDFs F̂j and take

a−j = Φ−1(F̂j(xj − 1)) and aj = Φ−1(F̂j(xj)). Hence, by evaluating the multivari-

ate Gaussian rectangle probability, we are able to recover the discrete probability

mass function (Nikoloulopoulos, 2013). We could, of course, use standard numerical

methods such as Simpsons’ rule to evaluate the integral and then, using this esti-

mate, compute the parameters µ and Σ. Instead, we examine an ad hoc coordinate

ascent method in which we first minimize the variational Hölder upper bound with

respect to (α1, τ) and then maximize with respect to (µ,Σ). Furthermore, we use

the positive semi-definite decomposition of Σ into uTu + exp(a) ◦ Id and obtain the

following simplified upper bound:

LH =
1

α1

n∑

i=1

logU(τi, α1) +
1

α2

J(α2(Σ− diag(τ)))− n

2
log 2π,

where

U(τi, α1) =

√
π

2α1τi

[

Φ

(√
τiα1

2
ri

)

− Φ

(√
τiα1

2
li

)]

for 1 ≤ i ≤ n,

J(M) = −1
2
log(det(M)) and

lij = Φ−1(F̂j(xij − 1)), rij = Φ−1(F̂j(xij))

(4.23)
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We aim to solve the following optimization problem:

â, û, τ̂, α̂1 = max
(a,u)∈Rd×Rd

min
(τ,α1)∈Rd×R+

LH (4.24)

where τ1 can be initialized to any value which leads diag(τ) ≺ Σ, for example to half

the minimum eigenvalue of Σ.

Algorithm 5: Hölder Variational Bayes parameter updates.

Input: Matrix of observations X ∈ R
n×d, minibatch size N , learning rate α;

Output: Learned a, τ, v, α1;

Initialize a, τ1, v, α1;

Set φ← u ∪ a;

Set θ ← τ1 ∪ α1;

Estimate the true marginals using the eCDFs {F̂j}dj=1;

for t in 1, ..,∞ (until convergence) do

X
M ← Sample M points from X;

gθ ←∇θL̂MH (θ, φ;XM) (Get a tighter approximation to the upper

bound);

θ ← θ − αgθ (Update the parameters);

gφ ← ∇φ − L̂MH (θ, φ;XM) (Maximize the data probability);

φ← φ− αgφ (Update the parameters);

end

Algorithm 5 starts by approximating p(X) by minimizing the Hölder upper

bound with respect to the variational parameters (τ, α1) and then maximizing the

evidence with respect to (u, a). The process continues until the estimated quantities
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stabilize or until a maximal number of steps.

As discussed in the experimental section, this approach is extremely sensitive to

hyperparameter selection. While it has interesting theoretical properties such as

consistency (Bouchard and Lakshminarayanan, 2015), the algorithm is less stable

than the full-rank VAE and should be used with great care.
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Chapter 5
Experiments

To assess the performance of our algorithm, we artificially generate multivariate

dependent data as follows:

Algorithm 6: Generation of correlated observations

Input: Collection of distribution functions {Fj}dj=1, Gaussian covariance

matrix Σ ∈ R
d×d, number of observations n;

Output: Matrix of observations X ∈ R
n×d;

y ← {};

for i in 1, .., n do

Sample zi ∼ N (0,Σ);

y ← y ∪ zi;

end

X ← {};

for j in 1, .., d do

yj ← Φ1(uj);

X ←X ∪ F−1
j (yj);

end

Observe how we are using the inverse of the distribution function, F−1
j , which

is well-defined for continuous random variables. For discrete random variables, we

define the inverse as F−1(x) = inf{y : F (y) ≥ x}.
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The output of the algorithm is a matrix of dependent observations, each of which has

the specified marginal distribution Fj . We use Algorithm 6 to generate 200 bivariate

samples from two Gaussian copulas with parameters 0 and 0.9, respectively. We

then use the quantile transform to create Poisson random variables with λ1 = 1

and λ2 = 10, respectively. All two-dimensional experiments use the same Poisson

marginals. We ran the multi-armed bandit (MAB) algorithm with ε = 0.1 to estimate

a   Σ01=0.0 b   Σ01=0.9
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Figure 5–1: Parameters estimated by the MAB algorithm over training iterations for
two (a) uncorrelated Poisson variables and (b) positively correlated Poisson variables.

the copula parameters from the simulated data and present the results below.

Figure 5–1 shows the evolution of the parameter estimates as a function of iterations

for both datasets. The algorithm found the following parameter estimates:

Σ̂a =






1 −0.014

−0.014 1




 and Σ̂b =






1 0.861

0.861 1




 (5.1)

which are surprisingly accurate considering that we are not making use of the gra-

dient. Now, we assess the performance of the Hölder upper bound optimization
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algorithm. Figure 5–2 shows the upper bound estimated by coordinate descent. Ob-

Steps

Figure 5–2: The Hölder variational upper bound estimated by Algorithm 5.

serve how phases of minimization and maximization alternate, similarly to Gibbs

sampling. The method is quite sensitive to hyperparameter choice. The figure was

obtained with samples from a Gaussian copula with parameter 0, run for 20 steps

of joint and coordinate-wise optimization. The learning rate was chosen to be 10−4;

a, u and α1 were initialized randomly from a Uniform(0, 1) distribution; τ was initial-

ized in the convex set of Σ. After convergence, the algorithm estimated the copula

parameter to be 0.227, thus overestimating the true value.
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R
Method −0.5 0.0 0.5

R̂01

Ground truth −0.500 0.000 0.500
Observed glasso −0.468 0.043 0.558
Latent glasso −0.486 0.000 0.415

FR-VAE −0.503 0.044 0.495

Ω̂01

Ground truth 0.667 0.000 −0.667
Observed glasso 0.599 −0.016 −0.599
Latent glasso 0.486 0.000 −0.415

FR-VAE 0.673 −0.044 -0.656

Table 5–1: Performance of FR-VAE, observed glasso and latent glasso on the two-
dimensional Gaussian model with Poisson marginals.

We next conducted another set of experiments to compare the FR-VAE and

glasso algorithms. Applying the graphical lasso algorithm to the discrete observed

samples X induces bias into the estimates: we are looking to estimate the parameter

of the copula, and not the covariance between the marginals. For this reason, we

conduct experiments on two variants of glasso: the naive glasso which estimates the

observed ground truth Σij = E[XiXj ] − E[Xi]E[Xj ], 1 ≤ i, j ≤ d and the Gaussian

glasso which estimates the latent ground truth Σ̃ij = E[ZiZj] − E[Zi]E[Zj ] where

Zi = Φ−1(Fi(Xi)), 1 ≤ i ≤ d and the eCDF is used to estimate the true CDF. In

neither case does glasso explicitly take care of the inputs being non-continuous. All

observations from the latent continuous model go to the same discrete bin and can-

not be recovered by glasso, thus inducing a model bias. We call the glasso which

uses the observed covariance matrix the observed glasso and the one which uses the
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latent covariance matrix the latent glasso.

Table 5–1 shows the off-diagonal entries in correlation and precision matrices esti-

mated by observed glasso, latent glasso and by the full-rank VAE. All results were

obtained by averaging across 20 trials. Bold entries highlight the algorithm which

estimate is closest to ground truth. Note that the observed glasso was always the

method to give the furthest estimate from the true copula parameter. This is due

not only to the model bias towards discrete data, but also to the marginals providing

an additional layer of complexity between the copula and the algorithm.

Finally, we estimated the copula parameters using FR-VAE for equally spaced

R01 from −1 to 1. Figure 5–3 shows the true value of the copula used to generate

the synthetic dataset versus the difference between the true and estimated values of

the parameter found by the variational auto-encoder.

Figure 5–3: True value of the copula parameter versus the values estimated by the
FR-VAE algorithm.
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The mean and the standard deviation shown in the plot were computed from

20 trials on the same dataset (that is, with Poisson(λ = 1) and Poisson(λ = 10)

marginals). Note that the 95% confidence interval is narrow for values of R01 ≥

−0.75; estimates of the parameter at the boundary of the space (when R01 < −0.75)

have higher variance. This is mostly due to numerical stability issues, in which case

even though Σ is at least positive semi-definite, transforming it into a correlation ma-

trix based on small sample sizes causes an avalanche effect and a small perturbation

in the entries of Σ̂ causes large perturbations in R̂ and Ω̂.

e₂e₁

e₂

e₁

e₃ e₃

a   b   c   

Figure 5–4: Pairwise contour plots of the squared error between the true value of the
covariance parameters and the estimates returned by the FR-VAE algorithm.

We conducted an additional series of experiments in which the dataset was sam-

pled from a three-dimensional Gaussian copula model with Poisson(λ = 10),Poisson(λ =
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Figure 5–5: Pairwise contour plots of the squared error between the true value of the
covariance parameters and the estimates returned by the observed glasso algorithm.

5) and Poisson(λ = 1) marginal distribution functions. The Gaussian copula param-

eter in the three-dimensional case has the following form:

R =









1 R10 R20

R10 1 R21

R20 R21 1









(5.2)

where the parameters of interest are θ = {R10, R20, R21}. We construct the element-

wise squared error which is defined for the element θi as ei = (θi − θ̂i)2. We then

conducted a grid search on 1000 values of θ where θi ∈ (−1, 1), 1 ≤ i ≤ 3 for

10 equally spaced values along each dimension. For instance, the vector (0, 0, 0)

corresponds to the independence copula and therefore is equivalent to generating a

dataset with independent Poisson marginals.

Figures 5–4, 5–5 and 5–6 show the pairwise contour plots of the squared error

between the true value of the covariance parameters and the estimate given by the

FR-VAE, observed glasso and latent glasso algorithms, respectively. The points on
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Figure 5–6: Pairwise contour plots of the squared error between the true value of the
covariance parameters and the estimates returned by the latent glasso algorithm.

the plot were obtained by joining (e1, e2, e3) into a 3−dimensional vector.

We can see that while the errors of the FR-VAE and latent glasso predictions are

concentrated around the origin and going to a maximum value of 2, the errors of the

observed glasso algorithm range up to 40. Such high variation in the observed glasso

predictions might be due to stability issues on the boundary of the parameter space.

To compare the numerical stability of a linear system of the form Ax = b for a

A ∈ Mn×d and real vector x, b, the condition number κ(A) is used. If e is the error

in b, then

κ(A) = max
e,b6=0

||A−1e||
||A−1b||

||e||
||b||

= ||A−1|| · ||A||,

(5.3)

that is the ratio of the norm of the error in the solution A−1b to the error in b. Using

properties of norms, κ(A) = ||A−1|| · ||A|| ≥ ||A−1A|| = 1. As a rule of thumb, when

κ(A) = 10k, then we may lose up to k digits of accuracy due to the instability of
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the system. In fact, since solving the system of linear equations Ax = b requires

a matrix inversion, the stability of the solution (i.e. the magnitude of its norm) is

directly connected to the stability of the matrix inversion algorithm.

We compare the condition numbers κ(Σ) for the same 1000 values used in the grid-
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Figure 5–7: Distribution of the condition numbers of Σ for various true copula pa-
rameters θ ∈ (−1, 1)3 as estimated by the FR-VAE and glasso methods.

search above and use them to construct a kernel density estimate plot (see Figure 5–

7). The plot shows that the FR-VAE and latent glasso algorithms have condition

numbers of Σ concentrated at values close to 1 as opposed to larger values produced

by observed glasso. The matrices Σ estimated by FR-VAE have, on average, a con-

dition number of 18.09 while observed glasso outputs covariance matrices with a
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condition number of 30.66 and latent glasso yields an average condition number of

11.22. Precision matrices obtained through the variational auto-encoder are there-

fore less susceptible to have blown-out components than the ones estimated through

observed glasso. On the other hand, latent glasso seems to be producing more stable

solutions overall but is susceptible to model bias due to the discrete nature of the

observations.
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Chapter 6
Discussion

In the previous chapter, we have assessed the performance of three proposed

methods of graphical model reconstruction. The first algorithm made use of multi-

armed bandits to estimate the value of Gaussian copula parameters, the second

method leveraged the Hölder variational upper bound in order to estimate the trun-

cated Gaussian integral which corresponds to the probability mass function over

the input dataset. The last algorithm used a variational auto-encoder to learn the

parameters of the latent copula function. The third methodology worked the best

among all suggested algorithms. The third approach had the most accurate estimate

of the copula parameters, because we have used the correct prior over the copula

parameter. The prior over z was specified by the N (0, Σ̂) distribution, where Σ̂

was estimated through the unbiased estimator Σ̂ = 1
n−1

∑n

i=1(xi· − x̄)T (xi· − x̄) for

xi· =
1
d

∑d

j=1 xij .

6.1 Multi-Armed Bandits as a genetic algorithm

Taking a closer look at the MAB algorithm, we can see that it is similar to a

genetic algorithm. Both approaches optimize some objective function: the multi-

armed bandit maximizes the expected returns and genetic algorithms maximize the

fitness of an individual in the hopes of increasing the average fitness of the popula-

tion. Neither method has access to the gradients since they have to work with any
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kind of objective function, including non-continuous and non-differentiable functions.

Both algorithms rely on stochastic (i.e. suboptimal) decision making to explore the

parameter space and achieve a global optimum. The MAB algorithm which we used

in the experiments had the simplest ε−greedy exploration strategy, in which a ran-

dom arm is pulled with probability ε. On the other hand, genetic methods make use

of two stochastic mechanisms: mutations and crossovers. A mutation is a random

perturbation in the state of the individual. For example, if we want to find the

optimal undirected graph connectivity structure, the state would be the adjacency

matrix and random mutations would remove or add and edge with some (typically

small) probability. Crossovers occur between two potential solutions and mimic the

reproduction mechanism: random parts of the state of one individual are replaced

by the complementary parts of the other individual, hence taking the "average" of

both states.

Unlike genetic algorithms, bandits explicitly interact with a given environment and

the reward (fitness) function is a property of the system as opposed to being chosen

by the researcher. When designing a genetic algorithm for a specific task, the fitness

score is typically chosen to reflect a notion of proximity to the true solution (a heuris-

tic is used). The exploration strategy is directly dependent on the fitness function,

and more fit individuals will have higher crossover rates, driving the population’s

average fitness up.

The notion of state in a multi-armed bandit is rather blurred: the sequence in which

arms are pulled can be seen as a transition into the same state but through different
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actions and therefore different rewards. Genetic algorithms are closer to the classi-

cal reinforcement learning problem formulation, in the sense that they have feasible

configurations which induce a notion of state.

6.2 Applying glasso to a latent variable model

Originally, graphical lasso was designed to provide an L1 penalized precision

matrix estimated from data. As mentioned earlier, the algorithm assumes that the

data is jointly distributed as a d−variate Gaussian distribution with unknown mean µ

and precision matrix Ω. Glasso relies on maximizing the penalized normal likelihood

(3.3). However, if the dataset X is discrete, the observed glasso will wrongly assume

a multivariate Gaussian model for what is in fact a Gaussian copula model with

discrete marginals. The estimated precision and covariance matrices will therefore

be biased.

z

X

Figure 6–1: Latent Gaussian model Z with discrete observations X. In order to
recover the probability mass function of X, we marginalize out the hidden variable
Z.

Recall the latent copula model, in which an unobserved continuous function C

generates discrete observations Xj, 1 ≤ j ≤ d. If C is the Gaussian copula, we ob-

tain the latent Gaussian copula model. Discrete observations are generated through

truncations of the multivariate Gaussian at points corresponding to the values of the
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discrete pmf.

For continuous distributions such as the exponential, mapping the original observa-

tionsXj onto the multivariate Gaussian and back is possible through Zj = Φ−1(FXj
(Xj))

and Xj = F−1
Xj

(Φ(Zj)) for 1 ≤ j ≤ d, respectively. However, once the data has been

discretized through some discrete CDF, it is impossible to recover the original con-

tinuous formulation since multiple z values lead to the same discrete bin.

One major advantage of the FR-VAE method over glasso is that the latent gaus-

sian integral representation of the discrete pmf allows us to simultaneously learn

the mapping X 7→ Z with an encoding network and the mapping Z 7→ X with a

decoding network. Because the dimension of Z is the same as the dimension of X

by construction, there is a one-to-one correspondence between observed and latent

variables.

6.3 Performance analysis of the variational Hölder upper bound opti-
mization

The variational Hölder upper bound estimates multivariate Gaussian integrals

by fitting the variational family to a sensible prior over the parameters. The choice

of the prior dictates the form of the Kullback-Leibler divergence: certain tractable

priors do not yield a closed-form KL divergence when combined with variational

densities. However, in our case, we pick both the prior and the variational density

to be multivariate Gaussian. We picked a N (0,Σ) prior over the latent variables

Z1, ..., Zd, where Σ was the unbiased maximum likelihood estimate. As mentioned

in previous sections, Σ estimated in such a way needs not to be full-rank nor invert-

ible. The vector decomposition of Σ ensures that the variational parameters always

produce an invertible matrix. Figure 5–2 shows the phases of minimization of the
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upper bound to get a tighter approximation to the multivariate Gaussian integral

and of maximization of the data probability through prior estimation. We can see

the algorithm as alternating between estimating the variational parameters and es-

timating the prior from data. The variational Hölder upper bound uses alternating

gradient descent to project the initial covariance estimate onto the positive-definite

cone, making the matrix full rank.

The method turned out to be much more sensitive to hyperparameter choice than

the FR-VAE algorithm. For instance, choosing a large learning rate would cause

numerical stability issues during training, sometimes causing the upper bound to

jump over the true estimate. Initializing the parameter τ to be in the convex set of

Σ in order to guarantee proper convergence yields sensible results in the case when

Σ is fixed prior to training. However, if we dynamically update Σ, then we should

always clip τ to the nearest positive-definite matrix.

6.4 Concluding remarks

We proposed three novel methods of estimating the dependence structure of

a Gaussian copula model with discrete marginals. The first approach was based on

multi-armed bandits, the second maximized the variational Hölder upper bound with

respect to prior parameters and the last algorithm assumed a latent Gaussian copula

structure, using a variational auto-encoder to simultaneously learn the variational

density (i.e. copula) parameters together with the marginal mass functions.

All three methods learn a vector decomposition of the covariance matrix which is

shown to always be positive-definite. The precision matrix (i.e. the inverse of the

covariance matrix) encodes the dependence graph between the random variables of

74



interest and can be easily obtained through the Sherman-Morrison inversion for-

mula. We conducted a series of experiments on artificially generated data obtained

from both 2−dimensional and 3−dimensional Gaussian copula models with Poisson

marginals with parameters λ = 1, 5, 10. We assessed the performance of all three

algorithms by comparing their respective mean squared error to the current state-

of-the-art in the field algorithm known as graphical lasso.

The multi-armed bandit and variational Hölder methods suffer from stability issues

and failed to correctly estimate the copula correlation parameter. On the other hand,

FR-VAE was compared to graphical lasso estimates obtained directly from the ob-

served dataset and from the dataset mapped onto a multivariate Gaussian. Both

FR-VAE and latent glasso yielded a similarly low mean squared error and condition

numbers, which highlighted the numeric stability of their estimates of Σ.

A potential extension of the present thesis would be to adapt the FR-VAE algo-

rithm to highly dimensional data. For instance, the MNIST dataset which contains

handwritten digits from 0 to 9 of size 28 by 28 pixels would have a 784 × 784 co-

variance matrix which even for modern day algorithms is a large search space. The

challenge would be to ensure numerical stability of the gradient update step to keep

the covariance matrix invertible.
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Chapter 7
Definitions

• Big-O: Also denoted as O(), Big − O notation is a shorthand for asymptotic

dominance of one function over another. Let f and g be defined on the same

real interval. Then, f(x) ∈ O(g(x)) if and only if ∃M ∈ R
+, x0 ∈ R : |f(x)| ≤

M |g(x)|, ∀x ≥ x0. For instance, if
√
x ∈ O(x), then

√
x is eventually domi-

nated by x for all x ≥ 1. In computer science, this notation is used to denote

the worst-case complexity of an algorithm or approximation errors.

• Random variable: A measurable function X : Ω → RX is called a random

variable if it maps elements ω ∈ Ω in the sample space onto a measurable space

called the support of X, that is RX ⊆ R. The probability that an event E ⊆ Ω

occurs is equivalent to the expression P [X ∈ E] = P [w ∈ Ω : X(ω) ∈ E],

hence the requirement for Rx to be measurable.

• Support of a random variable: The support of a random variable X is the

set RX = {x ∈ R : ∀ω ∈ Ω, P [X(ω) = x] > 0}. Alternatively, RX ⊆ R is the

smallest closed set such that P [X ∈ RX ] = 1.
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