
Deep Reinforcement and InfoMax Learning

Introduction

We strive for RL agents that are able to adapt quickly and reuse knowledge 
when presented a sequence of different tasks with variable reward 
functions. Viewing model-based agents from a representation learning 
perspective, a desired outcome is an agent that understands the underlying 
generative factors of the environment that determine the observed 
state/action sequences, leading to generalization to other environments built 
from the same generative factors.

In addition, learning a predictive model affords a richer learning signal than 
those provided by reward alone, which could reduce sample complexity 
compared to model-free methods.

Our work is based on the hypothesis that a model-free agent whose 
representations are predictive of properties of future states (beyond 
expected rewards) will be more capable of solving and adapting to
new RL problems and, in a way, incorporate aspects of model-based 
learning.

Ising models are perfect examples of quasi-deterministic structured systems. 
We made Ising models (temperature=1/0.4) evolve in a portion of a 84 x 84 
screen, then fit the DRIML objective onto it.

DRIML successfully captures the predictable portion of the screen, even at 
the very beginning of the Ising evolution.

Algorithm
● DRIML optimizes an auxiliary objective together with the C51 loss
● The auxiliary objective is the InfoNCE loss, which lower bounds the 

mutual information between state-action pairs (st,at) at time t and state 
st+k for integer k > 0.

Adaptive selection of predictive timescale

DRIML-ada performs the best on most Procgen tasks; the predictive 
timescale k is sampled from a non-homogeneous geometric distributions, 
with probabilities of P(At+1|At) learned at training time. This avoids DRIML to 
learn “redundant” action sequences, and focuses on timescales where the 
agent’s behavior switches drastically.

Average train-time rewards on 500 fixed levels of Procgen. Normalization is performed with respect to the lowest score in 
each row.

The main components of the DRIML algorithm. Greek letters (purple and blue) denote DIM heads, green denotes the C51 
value head, orange denotes the common encoder.
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The auxiliary loss is described by the following equations, where f denote 
layers of the encoder trunk, and greek letters denote the DIM heads (either 
global or local).

Results

Ising model

Ms.PacMan continual learning

We used a simplified version of Ms.Pacman1 to generate
 (a)  4 tasks where P(ghost takes a random action)=ϵ and plot the DRIML 
loss over training steps, 
(b) domains where only one of 4 ghosts can kill the agent, and tasks switch 
after 5k trajectories, and 
(c) a similar setup to b, except that an Ising model is evolving in the walled 
regions of the screen.

DRIML is able to predict deterministic portions of the screen, which help it 
adapt in a domain adaptation scenario, and achieve better returns. 
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